记者3月31日从中车长春轨道客车股份有限公司获悉,由这家企业自主研制的高温超导电动悬浮全要素试验系统完成首次悬浮运行,为下一步工程化应用奠定基础。
据中车长客副总工程师兼磁浮研究所所长于青松介绍,超导电动悬浮交通系统由车辆、轨道、牵引供电、运行通信等系统构成,适用于高速、超高速和低真空管道等运用场景,运行速度可达600km/h及以上,具有高速、安全、绿色、智能、舒适及环境适应性强等优势。
车辆实现了达速电动悬浮
不同于此前发现的金属和合金等20 K以下的低温超导体,这类材料只需要降温到一个相对较高的温度(比如35 K 的La-Ba-Cu-O体系和93 K的Y-Ba-Cu-O体系)[1,2],就可实现完全没有电阻地导电,同时对很强的磁场产生排斥效应。有了这种材料,超高分辨率的医用核磁共振成像、远距离的无损耗输电、超高速的磁浮高铁、小型化的商业核聚变堆等等改变世界的科技应用,有望逐渐走进人们的生活。
高温超导材料被发现至今已经三十多年,然而其中微观物理机制依然是个谜。在传统的金属合金超导体中,电子借助吸引相互作用而两两配对,并在低温下凝聚成超流态,从而电流可以无阻力地流动。而高温超导体的配对机理,仍然是当今凝聚态物理皇冠上的明珠[2]。理解了高温超导机理,可以帮助我们设计常温超导体,造福社会。
最近,美国的《科学》杂志于2021年9月10日发表了斯坦福大学沈志勋课题组在高温超导机理研究的新成果《一维掺杂铜氧链中的超强近邻吸引作用力》,实验上显示了在一维铜氧链上存在超强近邻吸引作用力的证据,对于理解二维铜氧面上的高温超导配对机制有重要启发[3]。
高温超导体发现之后,科学家们很快就进一步发现了它们整个家族具有相似晶体结构的铜氧化物都可以在较高的温度超导[2]。这些化合物都具有一个二维的铜氧面,它正是这些材料里超导电流运动的通道,而准二维的铜氧面以外,是给铜氧面提供带电载荷(载流子)的电荷库(见图一)。
高温超导发现后,首先P.W. Anderson指出,铜氧化物中的高温超导可能起源于哈伯德模型中的RVB态[4]。然后,以张富春为代表的一批物理学家,从具体的铜氧化物的轨道相互作用出发,阐明了其低能有效模型与哈伯德模型的对应关系[5,6]。虽然强关联模型中的参数很难通过数值计算的方式定出来,但长期的理论和实验互相比较已经基本确定了哈伯德模型中这两个参数的范围。
在量子力学建立过程中,泡利是一位举足轻重的物理学家,泡利不相容原理是量子力学里的一个基本原理,相当于牛顿定律第三定律(作用力和反作用力)在经典力学里的地位。
现在这套尖端设备正是研究准一维的铜氧链材料体系的利器。这种材料的低维几何结构导致其十分不稳定,对于块体材料而言,只有无掺杂的母体可以较为稳定存在。所以之前关于掺杂下一维铜氧链的研究都停留在理论层面[24-26]。但在这种超真空环境中的薄膜就不一样了,用臭氧烘烤这种含有一维的铜氧链的薄膜,可以改变铜氧链中载流子的密度,并可以同时进行光谱测量。根据这个思路,研究团队对该材料进行了系统性的测量,以期得到与准二维铜氧化物超导体对应的一维体系掺杂的信息[3]。
用大科学设备同步辐射光源,在世界最先进的角分辨光电子谱仪里,我们可以看到空子(holon),以及空子之间的相互作用[3]。具体来说,光电子谱的动量分布曲线里有一个峰,代表了这种空子之间相互作用的强度[37,38]。图五所示的红线就是一维铜氧链中测到的一条实验曲线,在中间的两个是代表空子的主峰,两边明显有一双较强的“肩膀”,这个“肩膀”就是空子之间相互作用的特征峰。
设想一下,你在一个平板上扔玻璃球,由于球与球之间的碰撞,这些玻璃球会分散开散落各地,这就类似于纯电子系统的情况。但是如果我们在柔软的床垫上扔玻璃球,你会发现这些球会聚集在一起。这是因为,一个球把床垫压出一个坑的时候,第二个球就会倾向于掉到坑里降低势能。如果我们只关心球的位置而无视床垫这个背景,看起来就像这些玻璃球互相之间有了吸引力。
声子可以被二次量子化用来描述更微观的、量子化的振动模式。这个相互吸引的机制其实在上世纪中叶就已经被提出并且得到验证。当这个吸引力足够强的时候,电子就倾向于成对存在并运动,形成了一种新的束缚态:库珀对。这种成对出现的电子呈现出玻色子的性质,因此不会在运动中被散射,体现出超导电性。这套理论便是固体物理里最著名的发现之一:BCS理论。它成功地解释了绝大部分物质在低温下的超导现象。后来经过多种不同程度的改进,对超导现象的描述从定性提升到了定量的量级 [42-45]。
[1] J. G. Bednorzand, K. A. Müller, Possible High TC Superconductivity in the Ba-La-Cu-O System, Zeitschrift FUR Physik B Condensed Matter 64, 189 (1986).
[2] B. Keimer, S. Kivelson, M. Norman, S. Uchida, and J. Zaanen, From Quantum Matter to High-Temperature Superconductivity in Copper Oxides, Nature 518, 179 (2015).
[3] Z. Chen, Y. Wang, S. N. Rebec, T. Jia, M. Hashimoto, D. Lu, B. Moritz, R. G. Moore, T. P. Devereaux, and Z.-X. Shen, Anomalously Strong Near-Neighbor Attraction in Doped 1D Cuprate Chains, Science 373, 1235-1239 (2021).
[4] P. W. Anderson, The Resonating Valence Bond State in La2Cuo4 and Superconductivity, Science 235, 1196 (1987).
[5] F. Zhang and T. Rice, Effective Hamiltonian for the Superconducting Cu Oxides, Phys. Rev. B 37, 3759 (1988).
[6] H. Eskes and G. Sawatzky, Tendency Towards Local Spin Compensation of Holes in the High-T C Copper Compounds, Phys. Rev. Lett. 61, 1415 (1988).
[7] A. Singh and P. Goswami, Spin-Wave Spectrum in La 2 Cuo 4: Double Occupancy and Competing Interaction Effects, Phys. Rev. B 66, 092402 (2002).
[8] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin, R. M. Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L. Chan, Stripe Order in the Underdoped Region of the Two-Dimensional Hubbard Model, Science 358, 1155 (2017).
[9] E. W. Huang, C. B. Mendl, S. Liu, S. Johnston, H.- C. Jiang, B. Moritz, and T. P. Devereaux, Numerical Evidence of Fluctuating Stripes in the Normal State of High-Tc Cuprate Superconductors, Science 358, 1161 (2017).
[10] E. W. Huang, C. B. Mendl, H.-C. Jiang, B. Moritz, and T. P. Devereaux, Stripe Order from the Perspective of the Hubbard Model, npj Quantum Mater. 3, 22 (2018).
[12] J. Kokalj, Bad-Metallic Behavior of Doped Mott Insula- tors, Phys. Rev. B 95, 041110 (2017).
[13] E. W. Huang, R. Sheppard, B. Moritz, and T. P. Devereaux, Strange Metallicity in the Doped Hubbard Model, Science 366, 987 (2019).
[14] P. Cha, A. A. Patel, E. Gull, and E.-A. Kim, Slope Invariant T-Linear Resistivity from Local Self-Energy, Phys. Rev. Research 2, 033434 (2020).
[15] T. A. Maier, M. Jarrell, T. Schulthess, P. Kent, and J. White, Systematic Study of d-Wave Superconductivity in the 2D Repulsive Hubbard Model, Phys. Rev. Lett. 95, 237001 (2005).
[16] B.-X. Zheng and G. K.-L. Chan, Ground-State Phase Diagram of the Square Lattice Hubbard Model from Density Matrix Embedding Theory, Phys. Rev. B 93, 035126 (2016).
[17] K. Ido, T. Ohgoe, and M. Imada, Competition among Various Charge-Inhomogeneous States and d-Wave Superconducting State in Hubbard Models on Square Lattices, Phys. Rev. B 97, 045138 (2018).
[18] H.-C. Jiang and T. P. Devereaux, Superconductivity in the Doped Hubbard Model and Its Interplay with Next-Nearest Hopping t’, Science 365, 1424 (2019).
[19] Y.-F. Jiang, J. Zaanen, T. P. Devereaux, and H.-C. Jiang, Ground State Phase Diagram of the Doped Hubbard Model on the Four-Leg Cylinder, Phys. Rev. Research 2, 033073 (2020).
[20] C.-M. Chung, M. Qin, S. Zhang, U. Schollwock, S. R. White, et al., Plaquette Versus Ordinary d-Wave Pairing in the T’-Hubbard Model on a Width-4 Cylinder, Phys. Rev. B 102, 041106 (2020).
[21] S. Jiang, D. J. Scalapino, and S. R. White, Ground State Phase Diagram of the t-t′-J Model, arxiv:2104.10149 (2021).
[22] S. Gong, W. Zhu, and D. Sheng, Robust d-Wave Superconductivity in the Square-Lattice t−J Model,arxiv:2104.03758 (2021).
[23] H.-C. Jiang and S. A. Kivelson, Stripe Order Enhanced Superconductivity in the Hubbard Model, arxiv:2105.07048 (2021).
[24] M. Kohno, Spectral properties near the Mott transition in the one-dimensional Hubbard model. Phys. Rev. Lett. 105, 106402 (2010).
[25] H. Benthien, F. Gebhard, E. Jeckelmann, Spectral function of the one-dimensional hubbard model away from half filling. Phys. Rev. Lett. 92, 256401 (2004).
[26] A. Nocera, F. H. L. Essler, A. E. Feiguin, Finite-temperature dynamics of the Mott insulating Hubbard chain. Phys. Rev. B. 97, 045146 (2018).
[27] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kan ́asz-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, A Cold-Atom Fermi–Hubbard Antiferromagnet, Nature 545, 462 (2017).
[28] C. Gross and I. Bloch, Quantum Simulations with Ultracold Atoms in Optical Lattices, Science 357, 995 (2017).
[29] T. A. Hilker, G. Salomon, F. Grusdt, A. Omran, M. Boll, E. Demler, I. Bloch, and C. Gross, Revealing Hidden Antiferromagnetic Correlations in Doped Hubbard Chains via String Correlators, Science 357, 484 (2017).
[30] C. S. Chiu, G. Ji, A. Bohrdt, M. Xu, M. Knap, E. Demler, F. Grusdt, M. Greiner, and D. Greif, String Patterns in the Doped Hubbard Model, Science 365, 251 (2019).
[31] J. Koepsell, J. Vijayan, P. Sompet, F. Grusdt, T. A. Hilker, E. Demler, G. Salomon, I. Bloch, and C. Gross, Imaging Magnetic Polarons in the Doped Fermi–Hubbard Model, Nature 572, 358 (2019).
[32] C. Kim, A. Y. Matsuura, Z. X. Shen, N. Motoyama, H. Eisaki, S. Uchida, T. Tohyama, S. Maekawa, Observation of spin-charge separation in one-dimensional SrCuO2. Phys. Rev. Lett. 77, 4054–4057 (1996).
[33] H. Fujisawa, T. Yokoya, T. Takahashi, S. Miyasaka, M. Kibune, H. Takagi, Angle-resolved photoemission study of Sr2CuO3. Phys. Rev. B. 59, 7358–7361 (1999).
[34] B. J. Kim, H. Koh, E. Rotenberg, S. J. Oh, H. Eisaki, N. Motoyama, S. Uchida, T. Tohyama, S. Maekawa, Z. X. Shen, C. Kim, Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2. Nat. Phys. 2, 397–401 (2006).
[35] J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W. Haverkort, V. N. Strocov, L. Hozoi, C. Monney, S. Nishimoto, S. Singh, A. Revcolevschi, J. S. Caux, L. Patthey, H. M. Rønnow, J. Van Den Brink, T. Schmitt, Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3. Nature. 485, 82–85 (2012).
[37] K. Penc, K. Hallberg, F. Mila, H. Shiba, Shadow band in the one-dimensional infinite-U hubbard model. Phys. Rev. Lett. 77, 1390–1393 (1996).
[38] K. Penc, K. Hallberg, F. Mila, H. Shiba, Spectral functions of the one-dimensional Hubbard model in the inifite U limit: How to use the factorized wave function. Phys. Rev. B. 55, 15475–15488 (1997).
[39] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic Theory of Superconductivity, Phys. Rev. 106, 162 (1957).
[40] Y. Wang, I. Esterlis, T. Shi, J.I. Cirac, and E. Demler, Zero-Temperature Phases of the 2D Hubbard-Holstein Model: A Non-Gaussian Exact Diagonalization Study. Physical Review Research 2, 043258 (2020)
[41] Yao Wang, Zhuoyu Chen, Tao Shi, Brian Moritz, Zhi-Xun Shen, and Thomas P. Devereaux, Phonon-Mediated Long-Range Attractive Interaction in 1D Cuprates, arXiv:2107.05773 (2021).
[42] A. Migdal, Interaction between Electrons and Lattice Vibrations in a Normal Metal, Sov. Phys. JETP 7, 996 (1958).
[43] G. Eliashberg, Interactions between Electrons and Lattice Vibrations in a Superconductor, Sov. Phys. JETP 11, 696 (1960).
[44] W. McMillan, Transition Temperature of Strong-Coupled Superconductors, Phys. Rev. 167, 331 (1968).
[45] P. B. Allen and R. Dynes, Transition Temperature of Strong-Coupled Superconductors Reanalyzed, Phys. Rev. B 12, 905 (1975).
[46] J. A. Sobota, Y. He, and Z.-X. Shen, Angle-resolved photoemission studies of quantum materials, Rev. Mod. Phys. 93, 025006 (2021).
[47] Q.-Y. Wang, Z. Li, W.-H. Zhang, Z.-C. Zhang, J.-S. Zhang, W. Li, H. Ding, Y.-B. Ou, P. Deng, K. Chang, J. Wen, C.-L. Song, K. He, J.-F. Jia, S.-H. Ji, Y.-Y. Wang, L.-L. Wang, X. Chen, X.-C. Ma, and Q.-K. Xue, Chin. Phys. Lett. 29, 037402 (2012).
[48] J. Lee, F. Schmitt, R. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee & Z.-X. Shen, Nature 515, 245 (2014).
[49] Xiaofeng Xu, Shuyuan Zhang, Xuetao Zhu, and Jiandong Guo, Superconductivity enhancement in FeSe/SrTiO3: a review from the perspective of electron–phonon coupling, J. Phys.: Condens. Matter 32, 343003 (2020).